
Tochnlcql R port

ESD-89-TR-51

_Carnegie-Mellon University1- Software Engineering Institute

1 I DARK Porting and Extension Guide
I Kernel Version 3.0

Judy Bamberger
Timothy Coddington

Robert Firth
*Daniel Klein

David Stlnchcomb
Roger Van ScoyI-December 1989

DTIC
I ELECI

MAR 15 1990 L

I * 4 4

= 4 3
iA~ oe f I lae

I
I

Technical Report
CMU/SEI-89-TR-40

ESD-89-TR-51
December 1989

I

II DARK Porting and Extension Guide
I Kernel Version 3.0

I Judy Bamberger
Timothy Coddington

*I Daniel Klein
David Stinchcomb

II _Roger Van ScoyAcceion i-cOr

4 - ; Distributed Ada Real-Time Kernel ProjectNTIS C. l
0~I T K: T b

18y
I roD: t fb.:io" I

,

II

f4I -- ___Approved tor public release.
. Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213I

I
I
I

This technical report was prepared for the

SEI Joint Program Office I
ESD/AVS
Hanscom AFB, MA 01731 I
The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval 3
This report has been reviewed and is approved for publication.

I
FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

I
I
I

This work is sponsored by the U.S. Department of Defense.

Copyright 0 1989 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of I
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering.
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

I

I
II Table of Contents

1. 68020 to VMS Port 1
1. Compiler Evaluation 2

1.1. Features Essential for Porting DARK 2
1.2. Compiler Dependencies 2

* 1.3. Machine Code Dependencies 2
2. General Issues 3

2.1. Hardware_Interface 3
2.2. Low-Level Hardware Interface 4

2.2.1. Mynetworkaddress 42.2.2. Is_Kproc 4
2.2.3. IsNproc 5
2.2.4. P 5
2.2.5. V 5
2.2.6. Setinterrupt-priority 52.2.7. Resetinterrupt..priority 5

2.2.8. LowLevelHardware Package Body 5
3. Processor Management 6
4. Process Management 7

4.1. Process Encapsulation 7
4.1.1. Dummycallframe 7
4.1.2. Indirect call 8

4.2. Context Switcher 8
4.2.1. Savecontext 9
4.2.2. Resume_process 9
4.2.3. Switch.processes 9
4.2.4. VMS Version 9

5. Semaphore Management 10
6. Schedule Management 11
7. Communication Management 12

7.1. Nproc 12
7.2. Datagram_management 12
7.3. Datagramglobals 13
7.4. Busio 13

7.4.1. Initipli.e 13
7.4.2. Receive dg interrupt_handler 13

8. Interrupt Management 14
8.1. Fast Interrupts 14
8.2. Slow Interrupts 15

9. Time Management 17

I
ICMU/SEI-89-TR-40I

I
I

9.1. Generic_kerneltime 17
9.2. VMSservices 18 3
9.3. Timers 18

9.3.1. Settimer 19
9.3.2. Cancel_timer 19

9.4. Clock 19
9.4.1. Start 19
9.4.2. Stop 19
9.4.3. Gettime 19
9.4.4. Adjust-elapsedtime 19
9.4.5. Adjust-epoch time 19

10. Alarm Management 20
11. Tool Interface 21 I
12. Other Issues 22

12.1. AST Encapsulation 23
13. Portability Summary 25

II. Kernel Extensions 26
1. Dynamic Reconfiguration 27 3

1.1. Description 27
1.2. Rationale 27
1.3. Response 28

2. Fault Tolerance 29
2.1. Description 29 I
2.2. Rationale 29
2.3. Response 30

3. Tightly-Coupled Systems 31
3.1. Description 31
3.2. Rationale 32
3.3. Response 32

4. Code Overlays 33
4.1. Description 33 3
4.2. Rationale 33
4.3. Response 33

5. Communication Enhancements 34
5.1. " scription 34
5.2. Rationale 34 I
5.3. Response 35

6. Duplicate Load Images 36
6.1. Description 36 I
6.2. Rationale 36

I
CMU/SEI-89-TR-40I

6.3. Response 36
7. Single Processor Mode 37

7.1. Description 37

7.2. Rationale 37

7.3. Response 37
8. Initialization Control 38

3 8.1. Description 38

8.2. Rationale 38

8.3. Response 38
9. Processor Global Priority Adjustment 39

9.1. Description 39

9.2. Rationale 39
9.3. Response 39

10. Fast Mode Change 40

I 10.1. Description 40
10.2. Rationale 40
10.3. Response 40

11. Memory Management 41

11.1. Description 41
* 11.2. Rationale 41

11.3. Response 41
12. Extensibility Summary 42

Appendix A. Machine and Compiler Dependencies 43
A.1. General 68020 Dependencies 44

A.2. Detailed 68020 Assembly Language Dependencies 46
A.3. General VAXNMS Dependencies 47
A.4. Detailed VAX Assembly Language Dependencies 48

I
I

I
I

ICMU/SEI-89-TR-40 Iii

I
I

List of Figures
Figure 1: SETIMR Interface Before Modifications 24

FIgure 2: SETIMR Interface After Modifications 24 3
I
I
I
I
I
I
I
I
I
I
I
I
I
I

IV CMU/SEI-89-TR-40 3

I

DARK Porting and Extension Guide

Abstract: This document describes the modifications made to the Distributed
Ada Real-Time Kernel (DARK) software when porting it from its original execution
environment, the 68020-based testbed built at the Software Engineering Institute,
to a VAX/VMS system. This document also contains information about logical
extensions to the Kernel, and the impacts thereof, should the Kernel be used in
operational systems.

I

I. 68020 to VMS PortI
Part I of this document is intended to give potential Kernel users information on the amount
and type of work required to port the Kernel to another architecture. This part tries to present
general issues and difficulties involved in rehosting the Kernel. All of the material contained
in Part I is based on porting the Kernel from a bareboard 68020 target to a VAX/VMS
target.1

There were several reasons for porting the Kernel to VMS:

3 1. To validate that the Kernel was indeed portable with a minimal amount of
effort.

2. To provide the Kernel on a readily available platform.
3. To provide the Kernel on a platform from which other ports can more easily be

launched.
4. To provide a host development version of the Kernel.

These goals dictated the direction of the port. They led to a Kernel that is syntactically
equivalent to the 68020 version (i.e., any code that compiles with the 68020 version of the
Kernel will compile with the VMS version) but not necessarily semantically equivalent (i.e.,
not all the operations are relevant on VMS nor does the VMS version obey the timing
constraints defined in [KFD 891).

After an overview of the compiler-related issues, Part I of this document will be structured
along the lines of the Kernel Facilities Definition [KFD 89], following the breakdown of

* functional areas therein.

1An overview of the VMS version can be found in Appendix I of [KAM 89].

CMU/SEI-89-TR-40

I
I

1. Compiler Evaluation
Before beginning the port of the Kernel to a new Ada compiler, it is necessary to examine
some features of the compiler and the generated code. These features fall into three areas:

" Features essential for porting the Kernel. I
" Adaptations required due to compiler dependencies.
* Adaptations required to interface to machine code. 3

1.1. Features Essential for Porting DARK
These are also described in full in Appendix J of [KAM 89]. In brief, the compiler must
support: 3

" Chapter 13 of [ALRM 83].
" The use of generics to achieve "conditional compilation."

1.2. Compiler Dependencies 3
These are described in full in Appendix J of [KAM 89]. The major dependencies that must
be taken into account are: 3

* The definition of basic data types in package system.
" Compiler dependencies in package elaboration order.
" Any special pragmata required to interface to machine code.

1.3. Machine Code Dependencies i
These are described in full in Appendix K of the [KAM 89]. The porter must determine:

" How Ada interfaces with machine code. I
* What parameter passing conventions are used.
" How the stack is organized. i
" How exception handling is performed.

These conventions must be studied in detail, because the lower levels of the Kernel create i
and modify stacks, perform process context switches, encapsulate interrupts, and in general
require exact knowledge of the target machine and the Ada compiler's conventions for code
generation. I

2

2 CMU/SEI-89-TR-40i

I
I

2. General Issues

2.1. HardwareInterface

The Kernel package hardwareinterface provides an interface to compiler-specific primitive
types. Within the Kernel itself, there are no references to the Ada predefined types; all
references to primitive types use names declared in package hardwareinterface. By doing
this, certain implementation-dependent details are abstracted from the Kernel in a uniform

* manner.

In addition, the package hardware interface provides a similar interface to the Ada package
system; all references to standard and implementation-specific names are encapsulated
within package hardwareinterface.

This strategy facilitates porting Kernel and application software across machines and across
compilers. For example, the Ada predefined type integer could be implemented as a 16-bit
integer or a 32-bit integer. When the Kernel requires a 32-bit integer, the exported type
hwlong integer is used; when the Kernel requires a 16-bit integer, the exported type
hwinteger is used. Were the standard type integer used, the application programmer
would not know from compiler to compiler which size of integer was used without searching
through compiler documentation. The Kernel makes this distinction explicit within the
Kernel, and provides that same capability to the application also.

The VMS version is functionally equivalent to the 68020 version, with the following changes:

1. A new type was introduced: hwjlong unsigned. This type is based on the
VMS-specific type system.unsigned longword. Hwjlong unsigned provides a
full 32-bit representation of an unsigned integer value.

2. The ordering of the names of bits in type hwbits8 has been reversed, as VMS
numbers bits from right-to-left. In this case, both the VAX Ada compiler and
VMS have a consistent view of how bits are numbered, whereas the TeleSoft
compiler had a different view from the M68020 documentation.

3. The type hwshortinteger is made available. VMS permits the declaration of
8-bit integer values; TeleSoft did not. The declaration of hwshortinteger did
exist in the original package hardwareinterface, but was commented out.
However, in order to maintain as much compatibility as possible between the
68020 and VMS versions of the Kernel, type hw shortinteger is currently not
used anywhere in the VMS version.

The following should be considered when porting the hardware interface capability to any
new target:

1. There are currently no test cases that prove that the compiler does, in fact,
provide exactly the number of bits defined by the representation specifications
for each of the types in package hardwareinterface. When writing test cases,
note that the Ada Language Reference Manual states that when 'size is
"applied to an object, it ['size] yields the number of bits allocated to hold the

5 CMU/SEI-89-TR-40 3

I
I

object." However, when 'size is "applied to a type or subtype, it yields the
minimum number of bits ... "(Section 13.7.2(5)).

2. The Ada Language Reference Manual clearly states, in Section 13.2(5), that
when 'size is used as the attribute in a lengthclause, "the value of the
expression specifies an upper bound for the number of bits to be allocated to
objects of the type or first named subtype T." Note that, if the compiler adds
on any "hidden descriptors" to the primitive value, storage for them must also
be included in the simple.expression used in the length_clause for the types
declared in package hardwareinterface.

3. Finally, the concept of system addresses (implemented in Ada via type
system.address) must be considered. Package hardwareinterface exports a
type hwaddress, which assumes that its value actually points to the first
storage unit of the true value and not to any descriptors or supplemental
address values. The Ada Language Reference Manual states that "X'address
yields the address of the first of the storage units allocated to X" (Section I13.7.2(3)). Note that this first storage unit may be for a descriptor, a

supplemental address, or the value itself. U
2.2. Low-Level Hardware Interface
Package lowlevel hardware was orginally created to hide details of the 68020 target I
hardware from the Kernel; it still performs that function on the VMS target, but with reduced
functionality.

2.2.1. Mynetworkaddress
This function returns the "node"2 number on which the code is executing. Under VMS, this I
"node" identification is supplied by the user to the Kernel at initialization time (on the 68020,
it is read directly from the hardware). n

2.2.2. IsKproc
This function returns a Boolean value: 3

" True, if the "node" is a Kernel processor (or Kproc).
" False, if the "node" is a Network processor (or Nproc). 3

Under VMS, this function always returns true, since all "nodes" are Kprocs.

i
I,

2 Node is always quoted when referring to a logical node versus a real, physically distinct processor, as in the
68020 version. 3
4 CMU/SEI-89-TR-40

I
I

2.2.3. IsNproc
This function returns a Boolean value:

i True, if ne "node" is a Network processor.

* False, if the "node" is a Kernel processor.

Under VMS, this function always returns false, since there are no Nprocs.

2.2.4. P
This procedure is used to synchronize access to datagrams in shared memory on the 68020
target. With only one processor per "node" on VMS, there is no need to protect the
datagram queue from concurrent access by another physical processor (although it is still
protected against concurrent access by processes and interrupt handlers). Since it is not
needed under VMS, the body is null.

2.2.5. V
This procedure is used to synchronize access to datagrams in shared memory on the 68020
target. Because it is not needed under VMS, for the same reasons noted in Section 2.2.4,* the body is null.

2.2.6. Set_interruptpriority
This function is used to mark the start of an atomic (or uninterruptable) region. Under VMS,
hardware interrupts are replaced by VMS ASTs. This function is implemented using the
VMS system service $SETAST to disable the delivery of ASTs during atomic regions. This
function still returns the previous interrupt level (i.e., ASTs enabled or disabled).

Since there are no priority levels associated with controlling AST delivery, the type
interrupt priority is now a subtype of Boolean, where:

e True, enable AST delivery.
I * False, disable AST delivery.

2.2.7. Resetinterruptpriority
This function is used to mark the end of an atomic (or uninterruptable) region. It operates as
the inverse of set_interruptpriority and is also implemented using $SETAST.

I 2.2.8. LowLevelHardware Package Body
The Kernel code that queries the user for the "node" nryber is located here. This ensures
that the "node" number is set during elaboration, before any calls can be made to
lowlevelhardware operations.

I
I

ICMU/SEI-89-TR-40 5

I
I

3. Processor Management

Generic processormanagement, processor management, networkconfiguration table,
and makenct are unchanged from the 68020 version.3

I
U
U
I
I
I
I
I
I
I

I
1

31n the VMS version, the "nodes" can be started in any order and the network initialization protocol will function
properly. This is a side effect of the queue discipline built into the VMS system services. 3
6 CMU/SEI-89-TR-40

I I I I[

I
I
3I 4. Process Management

3 4.1. Process Encapsulation

A Kernel process is an Ada procedure with neither parameters nor result. It executes in3 parallel with other processes under the control of the DARK Scheduler.

To create this effect, the process must be encapsulated in a manner that:

3 •Permits the Ada procedure to execute in its own environment.

* Executes the procedure in that environment.
i Properly handles exits from the procedure, either normal or abnormal (via

exception), and cleanly terminates the Kernel process.

The machine-dependent parts of this code are the procedures dummy callframe and3 indirectcall.

4.1.1. Dummycallframe
This procedure is used to initialize a new stack that will become the stack of a Kernel
process. To do this, dummy call frame must create, on the new process stack, a data
structure that looks exactly like an Ada call frame, and must save in the process
context savearea a machine state that, when restored, will cause the process to begin
execution in what it believes to be a valid manner.

I The illusion dummy call frame is required to fabricate is this: procedure dummy call frame
is executing as a parallel process and has just returned from a call of
lowleveljprocess encapsulation. Within a guarded region, dummycallframe invokes the
Ada procedure that is the Kernel process.

However the Kernel process terminates - by a return or by exception propagation - the
process encapsulation will itself never execute a return, but will destroy itself by a call of die.
Hence, there is no need to fabricate on the new stack anything above the call frame of3 dummy call frame, since it will never be needed.

The new stack data structure that was created must allow correct access to:

3 * The local variables of dummy callframe.
e The parameters of dummy call frame.

* All Ada global variables.

e All visible Ada subprograms.

This requires appropriate values to be computed and saved for the: stack pointer, frame
pointer, and argument pointer. It may also require other base registers to be set up. Note
that no access is permitted from a Kernel process to the local variables of any lexically3 enclosing block, so there is no need to fabricate a display or static chain.

3 CMU/SEI-89-TR-40 7

I
I

Finally, it may be necessary to take action to prevent Ada runtime diagnostic code, or an
Ada debugger, from "walking" up the new stack beyond the top. This action is highly
dependent on the internal details of the Ada run time and tools; however, it is usually safe
(and expensive) to link the call frame at the top of the new stack back into the normal call
chain (the chain that led to the call of dummy call frame) at a point that can never go out of
scope (e.g., to the top-level call by which the Ada run time first invoked the Ada procedure,
the DARK Main Unit).

The VMS port required rewriting the body of low level process encapsulation in machine
code. In addition, the pragma importjprocedure had to be added to the specification of
low level processencapsulation, which VAX Ada requires if a body is to be in machine
code.

4.1.2. Indirectcall 3
This procedure takes as its parameter the address of an Ada procedure and calls it. It
implements, therefore, the parametric procedure of languages such as Algol-60 or
Modula-2, but without safe type checking.

Indirectcall is required to do the following:

" Invoke its parameter as an Ada subprogram with neither parameters nor result.
" After a normal return from that subprogram, take a normal return to the caller.

" After an abnormal exit from that subprogram, propagate the exception to the I
caller.

The called subprogram must be able to access all global variables and any visible Ada
subprograms. It is not allowed to access any local variables of a lexically enclosing block.
The body of indirectcall was rewritten in machine code. In addition, the pragma
importjprocedure had to be added for the same reason as given above. I

4.2. Context Switcher
This package contains three procedures: savecontext, resumeprocess, and
switch processes. 3
The Ada part of contextswitcher makes all necessary changes in the Kernel data
structures, and it is portable. The machine-dependent part is in lowlevelcontextswitcher, 3
which performs the actual changes to machine state.

In all cases, the context to be saved and restored is the machine state that the conventions 3
require to be preserved across a procedure call. Each process has the illusion that it made
a simple call (e.g., a call to switch_processes), which took a synchronous return back to the
caller. In fact, there is a lapse of time between the call and the return, which the Kernel 3
process does not perceive since the Kernel saved its state and subsequently restored it
exactly.

8 CMU/SEI-89-TR-40 1

I
I

4.2.1. Savecontext
This subprogram takes the address of a context save area as its parameter and saves in
that context save area the current true machine state. Savecontext then returns. The
effect is that, if the saved state were subsequently restored, a return would transfer control
to exactly the point where savecontextwas called.

3 4.2.2. Resumeprocess
This subprogram does the opposite of savecontext. It takes the address of a context save
area as its parameter and copies the contents of that context save area to the hardware,
thus changing, for example, the general registers, the program counter, the stack pointers,
and anything else appropriate. It then returns, not to the caller since the program counter3 and stack have been changed, but rather to the process whose state has been restored.

In addition, resume process takes as a second parameter the address of the end of the new
stack - the one that will be restored. In most Ada compiler implementations, this value must
be written into a variable in the Ada run time - the variable against which the Ada run time
performs the stack overflow (StorageError) check. It may not be easy to find this variable.

I As an implementation note, observe that the process of restoring context will almost
certainly render invisible the argument list with which the procedure was called (e.g., by
overwriting the frame pointer). Care must be taken, therefore, not to perform this part of the
restore until the argument list is no longer needed.

4.2.3. Switch_processes
This performs the two actions savecontext and resume process in succession. It saves
the current true machine state in the area designated by its first parameter, restores the
state from the area designated by the second parameter, and if necessary resets the Ada
runtime stack limit variable from its third parameter.

3 Exactly the same implementation considerations apply as in Sections 4.2.1 and 4.2.2.

4.2.4. VMS Version3 The VMS versions were written in machine code. They save and restore the following
hardware registers:

e R2 through R 11
I AP

* FP

They do not saie and restore RO and R1 because the VMS calling conventions do not
require these registers to be saved across a procedure call. They do not save SP and PC
because the RET at the end of each routine restores the correct values from the call frame
addressed by FP.

I
I CMU/SEI-89-TR-409

I
I

5. Semaphore Management

Genericsemaphoremanagement and semaphore~management are unchanged from the
68020 version.I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

10 CMUISEI-89-TR-40I

= I II I II

I

1- 6. Schedule Management
The only change to package scheduler code is addition of the line:

pragma exportjprocedure (schedule ih);
to the specification. This change is required by VAX Ada to make the entry visible to
assembly language code.

I
I
I
I
U
I
I
U
I
I
I
I
I
3 CMU/SEI-89-TR-40 1

I
I

7. Communication Management
Generic_communication management and communicationmanagement are unchanged
from the 68020 version. n

The impact of porting the Kernel to VMS occurred within the Kernel packages that
implement the node-to-node communication.

7.1. Nproc

The Nproc and its associated I/O drivers were deleted. The Nproc is replaced by VMS
services that use shared mailboxes and ASTs (see Appendix I of [KAM 89]).

7.2. Datagram-management
The abstraction of datagrams and the manipulation of queues of datagrams is maintained in i
the VMS version of the Kernel (this is described in detail in the [KAM 89]). Several changes
were made to datagram management 3

" All datagram queue initialization was combined into one initialization procedure,
kproc initialize. This allows all the Kproc code dependent on the
datagram management package to remain unchanged. I

" The number of datagrams placed in the initial free pool by kproc initialize was
reduced. On the 68020, 1 megabyte of shared memory is reserved exclusively
for the datagram pool. This memory is allocated until a storage error is U
generated (i.e., until all available shared memory is exhausted). Clearly this is
not useful in the VMS environment. Kproc initialize allocates 100 datagrams
for each size (small, large, and kernel).

* The use of unchecked programming in the datagram queue initialization was
removed. This caused problems at run time, since the VAX Ada run time
performs garbage collection at the end of each local scope and the use of
unchecked conversion caused the garbage collector to lose track of the objects
and allowed them to be reclaimed when they were actually being used
elsewhere in the code. 3

" Aoc_dg has been modified to allocate additional datagrams via the Ada
allocator, if the initial free pool is exhausted. These datagrams are no different
from the initial allocation and are returned to the free pool when no longer
needed.

II
I

12 CMU/SEI-89oTR-40I

,,mu. ..m u m m u nanli~llmn l m I

7.3. Datagram-globals

The removal of unchecked programming from datagram management required that a
discriminant be added to datagram type declaration. The modified declaration is:

type datagram (size: buffer-range) is
record

local : local_optimizationrecord ;
header : datagram header;
buffer : databuffer(l .. size);

end record;

7.4. Bus io
The low-level communication in bus_io was minimally affected by the replacement of the
Nproc by VMS. Since the receipt of messages is interrupt driven in the 68020 version, the3 conversion from interrupts to ASTs was simple.

7.4.1. Initialize
Initialize was changed as follows:

1. The references to 68020 interrupts were excised from the code.
2. At execution time, a VMS mailbox is created to receive all incoming message

traffic (for this "node").
3. At execution time, a connection is made to the mailboxes on all the otherS"nodes" (both Kernel and non-Kernel). 4

4. At execution time, a $010 read with AST notice request is issued on the local
mailbox telling VMS that as soon as any entity writes a message to the
mailbox: read the data from the message and generate an AST to the
receive dg interrupthandler.

Once initialize executes, the node has a connection to all other nodes and is prepared to
field any incoming messages.

7.4.2. Receivedginterrupthandler
The conversion of the 68020 interrupt handler to a VMS AST handler was also
straightforward, the only differences being:

1. The handler is entered with a message already copied into a datagram.
2. A $QIO read with an AST notice request is issued, in order to receive an AST3 when the next message is written to the mailbox, and the handler exits.

Thus, VMS performs exactly those services that the 68020 Nproc performed. It receives
messages from a remote source, queues incoming messages until they are read, and3 generates "interrupts" when complete messages are received.

4 Each mailbox is qualified by the VMS user.id of the person executing the image. Thus, although multiple
users can simultaneously run tests, any given user can only be executing one test at a time (per VMS machine).

3 CMU/SEI-89-TR-40 13

I
I

8. Interrupt Management
The Kernel convention is that the application code may bind handlers to legal interrupts,
using the procedure bindinterrupt handler. The Kernel itself uses the same mechanism for
the interrupts it uses. 3
An interrupt handler is an Ada procedure with neither parameters nor result. It must be able
to access all global variables and any visible Ada subprograms. It is not allowed to access 3
any local variables of a lexically enclosing block.

The machine-dependent part of the interrupt handling capability is found in package 3
lowlevelinterrupt management and consists of two procedures: bindfasthandler and
bindslow handler.

The basic action of both procedures is the same: set up a structure that, when the interrupt
occurs, will cause the Ada handler to be invoked in a valid environment. This is usually
done by connecting the hardware interrupt to a machine code encapsulation. This 3
encapsulation invokes the Ada handler, in the same way as indirect call, but wraps around
this invocation any essential machine-dependent actions required to save and restore the
state of the interrupted process and to set up the proper environment of the handler. I
The encapsulation must also maintain the value of the variable interruptnesting, which is
what tells the rest of the Kernel that the currently executing code is part of an interrupt
handler. This information is needed, for example, to allow a blocking primitive to reject a callfrom a handler. 3
In addition, any necessary critical regions must be opened and closed within the
encapsulation to prevent an immediately succeeding interrupt from damaging machine
state. i

8.1. Fast Interrupts I
A "fast" interrupt is one that always returns to the interrupted process. This model is usually
supported well by the target machine or operating system. The basic actions of the 3
encapsulation are:

" Save any volatile hardware state.
" Set the hardware state to be the correct environment for the handler.
" Invoke the Ada procedure that is the handler.
" After a normal return from the handler, restore the volatile hardware state, and i

execute the appropriate instructions to return from interrupt and resume the
interrupted process.

" After an abnormal exit from the handler, recover control, discard the exception, i
restore the volatile hardware state, and execute the appropriate instructions toreturn from the interrupt handler and resume the interrupted process.

14 CMU/SEI-89-TR-40

El-

I
I

On VMS, the fast interrupts follow exactly the conventional response to an AST: the
encapsulation merely calls the true handler and then performs a return.

1 8.2. Slow Interrupts
A "slow" interrupt is one that, after being handled, exits to the Kernel Scheduler, which may
then choose either to resume the interrupted process or to suspend it and resume another.
Many machines and operating systems are built on the assumption that the application
programmer will not want to do this, so providing this capability in the Kernel can be difficult.

The Ada handler itself should be invoked exactly as for a fast interrupt. However, after the
return (or exit), the slow interrupt encapsulation must do the following:

* Ensure that the saved volatile state of the interrupted process is in a very safe
place.

* Change the machine state so that a return-from-interrupt can be executed. The
encapsulation must:

i Return control to the encapsulation code.
Place the processor back in normal state.
Be able to execute further machine code normally.

U The return-from-interrupt will therefore fool the underlying system into returning not to the
interrupted process, but rather back to the interrupt encapsulation code.

It is now necessary to invoke the Scheduler, which is done by a call of the parameterless
procedure Scheduler.schedue_ih.

3 The illusion that has been fabricated is that the interrupted process made a synchronous call
of the encapsulation code, which then made a synchronous call of the Scheduler. The
Scheduler will perform normal context saves and restores, and will eventually resume the
interrupted process. Typically, a normal context switch does not save the entire the
machine state, but rather only the state that must remain valid across a procedure call. The
interrupt encapsulation must therefore save and restore, on behalf of the interrupted
process, all other necessary state information.

When the Kernel Scheduler resumes the interrupted process, the resumption point is of
course in the interrupt encapsulation, immediately after the call of Scheduler.scheduleih.
The encapsulatiLn must therefore restore all volatile state information and issue the3 appropriate return instruction to get back to the interrupted process. Note two things:

* The machine state must be restored exactly as it was at the moment of
interruption. This includes things like coprocessor state, processor status
words, condition codes, and the like.

• The volatile state must be saved in a process-specific data area, since it must
be preserved across possibly many context switches and interrupts. The
process stack is usually a reasonable place for this data.

I CMU/SEI-89-TR-40 15

I I II II

I
Stow interrupts were very hard to implement in VMS, and required detailed knowledge of the
AST mechanism and great care in perverting it from its intended purpose. FurtherI

information can be found in the documentation of the relevant module.

I
I
I
I
I
I
I
I
I
I
I
I
I
1
I

16 CMU/SEI-89-TR-40I

. . m m m

I

*I 9. Time Management
The time functions were implemented using a signed 64-bit representation, as in the 68020
version. In the 68020 version, this 64-bit quantity was represented as two signed 32-bit
integers, since the TeleSoft compiler did not support true unsigned variables. On VMS, it
was possible to actually specify a 32-bit unsigned quantity, and time was stored as a 64-bit
quantity, manifested as a 32-bit unsigned low Iongword and a 32-bit signed high longword.
To maintain machine independence throughout the rest of the Kernel, the kerneltime
package required a new type declaration called hw unsignedlongword, which was defined3 in hardwareinterface (see Section 2.1).

Porting the time-handling features to VMS required changing generickerneltime and3 creating vmsservices.

3 9.1. Generic_kerneltime

In the 68020 version of package generickernel time, time was represented as a 64-bit
signed integer quantity with a resolution of lp.s and a range of roughly 150,000 years. The
choice of resolution was based on the accuracy of the hardware timers available on the
parallel I/O controllers. When the Kernel was ported to VMS, it was decided to utilize the full
accuracy of the clocks available through VMS. Hence, although time is still represented as
a 64-bit signed value, the resolution of the Kernel clock under VMS was changed to 100ns,
with a corresponding change in range to roughly 15,000 years.5 Since the bit patterns of
kerneltime and VMS time are almost equivalent, converting between kerneltime and VMS
time is often a null conversion with a simple overflow check.6

Finally, each of the routines for performing operations on type kerneltime were re-written.
Originally written in 68020 assembly language, the routines to add, subtract, negate,
multiply, divide, and compare kerneltime, as well as those to convert integral numbers of
seconds, milliseconds, and microseconds into kerneltime, were rewritten in VAX assembly
language.

7

I
I

I SThis reduction in range is not viewed as a problem for most ombedded applications.

SAn alternative implementation would have been to keep the original resolution and range of the Kernel clock,
and use the conversion functions in VMSServices to perform the multiplication and division by 10 to convert
between the kerneltime and the VMS time.

7Although technically the 64-bit arithmetic routines could have been written in Ada, they would have been far
more cumbersome than the resulting assembly language versions.

3 CMU/SEI-89-TR-40 17

9.2. VMS-services

The package vmsservices was needed to convert between the Kernel representation of
time and the VMS representation of time. The Kernel exports two time types (epochjtime
and elapsedime), and maintains all time values internally as a single type (kernel time). 3
The VMS version of the Kernel needed to preserve these types, but also had to interface
with the underlying notion of VMS time, which was represented as either an absolute time or
a delta time (see the VMS System Services Manual, Volume 8D, for more details). The new 3
functions tokernel time, to vmsabsolute _time, and to_ vmsdeltatime perform these
conversions.

The conversion functions were complicated by the underlying definition of base time. The
Kernel defines base time to be Julian day 1 (that is, 12:00 on 1 January, 4713 BCE, as
defined in the [KFD 89], Section 12.1.14), while VMS uses the Smithsonian base date (that
is, 00:00 on 17 November, 1858 CE) as its base time. When converting from epochtime to
VMS absolute time, it is necessary to check that the epoch time is later than the
Smithsonian base date. Furthermore, while the Kernel allows an elapsedtime to have a
negative value (representing a time already passed), VMS allows delta times to only have
positive values (representing only times in the future). When converting to a VMS delta
time, therefore, a check must be made to ensure that the time has not already passed. If it I
has, then the time is mapped to zero delta time; achieving the desired result, i.e., immediate
processing of the activity. 3
9.3. Timers

Use of the hardware timers is much simpler using VMS. Package timer controller written for
the 68020 version of the Kernel was deleted in the VMS version and its functionality
subsumed directly into the body of package timekeeper.

VMS supplies two services: $SETIMR and $CANTIM (described in detail in VMS System

Services, Volume 8D). These services, along with ASTs, provide all the tools needed to
implement both the package timekeeper and the Kernel's time event queue. The
conversion to VMS affected the body of time keeper as follows:

" All code that initialized timers was removed from initialize.

" All calls to timer controller.set timer were replaced by calls to the internal
procedure settimer.

" All calls to timercontrollr.canceltimer were replaced by calls to the internal
procedure canceltime,. 3

1
I

18 CMU/SEI-89-TR-40i

a a aI IU

I
I

9.3.1. Settimer
The VMS system service $SETIMR allows the user to set up an AST to occur at some future
time. When this future time arrives, an AST is generated, and the AST handler specified in
the call to $SETIMR is invoked. This handler then performs the necessary processing.

All that settimerdoes is:

1. Convert the epochtime of the event into a VMS delta time (since all Kernel
event times are maintained in epoch time).

2. Set up the timer to invoke the astencapsulation procedure (described in
Section 12.1) when the AST occurs.

9.3.2. Canceltimer
Since the Kernel has only one timer active at any given time, a simple call to $CANTIM
terminates the pending timer without generating an AST.

9.4. Clock
The VMS clock is used exactly as the 68020 hardware clock is used. Here, the
implementation is much simpler since it is built on the clock services provided by VMS.

9.4.1. Start
This operation is really a no-op. Since the VMS system clock is never stopped, it is never
started via this primitive. The sole action of this primitive is to log the baseepochime for
the user.

9.4.2. Stop
This operation is a no-op.

9.4.3. Gettime
This operation is implemented using $GETTIM and vmsservices.tokerneltime. The VMS
system clock is read, converted to kemel time, and returned to the user.

9.4.4. Adjust elapsed time
This operation is implemented as a no-op. It is certainly possible to implement this
operation, but it was not deemed to be a useful operation for a host development version.

9.4.5. Adjust epoch time
This operation is implemented as a no-op, for the same reasons as adjust elapsedjtime

I above.

I
ICMU/SEI-89-TR-40 19

U
I

10. Alarm Management
Genericalarmmanagement and alarmmanagement are unchanged from the 68020

version.

I
I
I
I
I
I
I
I
I
I
I
I
I
I

20 CMU/SEI-89-TR-40

I

I

* 11. Tool Interface

Generic_tool_interface, toolinterface, and generic_tool_interface_output are unchanged

I from the 68020 version.

I
I
I
I
I
I
I
I
I
I
I
I
I
I

ICMU/SEI-89-TR-40 21

I
I

12. Other Issues
This chapter summarizes other issues encountered during the port to VMS.

" Most of the 68020 target-dependent packages have no counterpart in the VMS
version and were deleted (see [KAM 89] for more details on these packages): I

" interprocessorinterrupts
* kernelinterruptmanagement
* memory addresses
• mz8305_definitons
• mvme 133adefinitions
" parallel id controller

* Scc porta had all of its functionality removed in order t, ,naintain consistency N
with the 68020 version in the higher levels of the Kernel.

" Hidden compiler dependencies:8

" Use of null array slices: In a number of places, the Kernel code relies on
the use of null array slices to short circuit array assignment statements.
It turns out that the TeleSoft compiler generates code that terminates the I
assignments as soon as a null slice is detected. On the other hand, the
VAX Ada compiler generated code to evaluate all the parts of the
statement before testing for the null slice. In some (expected) situations,
this generates an error under VMS while executing under Telesoft.

• Garbage collection in VAX Ada: Another dependency was inadvertent.
The datagram queues are created and the linked lists built by a
procedure in the DatagramManagement package. Unfortunately, while I
the queue control structures are local to the package body, the queues
themselves are local to the procedure body. Since TeleSoft does not dogarbage collection on locally allocated objects and VAX Ada does, thisled to useless datagram queues in the VMS version.

* Elaboration problems: Instantiations that elaborate correctly under
TeleSoft, all need pragma elaborate on the corresponding generic to
elaborate correctly under VAX Ada. The reason for this problem is
unknown. This is discussed in more detail in [KUM 89].

" Hand instantiations: Generickerneltime had to be hand-instantiated
due to a VAX Ada restriction that does not allow a generic package to
have a machine-code body.

* The VMS version of the Kernel can be executed by any user with normal VMS
privileges.

8These problems occurred only in the VMS version of the Kernel and each one has been corrected.

22 CMU/SEI-89-TR-40 I

I

12.1. AST Encapsulation

Under VMS, ASTs are normally bound to Ada task entries. Since tasks are not allowed in a
Kernel process, the default Ada binding provided by VMS had to be changed. As with
68020 interrupts, the Kernel binds procedures to ASTs. Also, under VMS, ASTs always
return to the interrupted context; however, with the Kernel, ASTs may result in the need to
switch context to another process. To avoid these difficulties, VMS must be fooled. This is
done by two steps:

1. Modifying the Ada signature of the system call that generates the AST.
2. Using the VMS-specific package ast manager.

The first step decouples ASTs from Ada task entries. The default signature provided by
package starlet to the Ada code is modified to create a new overloading for the entry. For
example, the system service $SETIMR (shown in Figure 1) takes as a parameter the name
of an Ada task entry (ASTADR) to invoke when the timer expires. The type asthandler can
only be generated as an attribute of an Ada task entry. An examination of the system
service $SETIMR in VAX VMS System Services, Volume 8D, shows that this parameter is
simply the address of a procedure to execute - exactly what is required for the Kernel.
Therefore, to remove the tie to Ada tasking, the specification for $SETIMR is modified as
shown in Figure 2.9 The differences are highlighted by uppercase.

Once a proper signature has been developed, the second step must be tackled. The new
signature allows a procedure to be called in response to an AST, but it does not allow the
Kernel to perform a context switch as a result of an AST. To do this requires placing a
Kernel layer between the AST handler and VMS. This layer is astmanager. Instead of
binding the AST directly to the desired AST handler, the AST is bound to
asthandlerencapsulation (ASTADR in Figure 2), with the parameter being the address of
the actual AST handler (REQIDT in Figure 2). Thus, when the AST occurs,
asthandlerencapsulation is invoked. It immediately calls the true handler. When the
handler finishes and exits normally, then asthandler encapsulation fools VMS into thinking
the AST has completed, at which point it can safely call scheduler.scheduleih to determine
if a context switch is needed.I

I
I

9These signatures are readily available in the file ADA$PREDEFINED:STARLET_.ADC.

CMU/SEI-89-TR-40 23

U
I

procedure settimer (
status : out condvalue-type; -- return value
efn : in starletef_number type : n
starlet. ef number zero;

daytim : in starletdatetimetype;
ASTADR IN AST-HANDLER = NO AST HANDLER;

REQZDT :IN USERARGTYPE :USER_ ARGZERO);

pragma interface (external, settimer);

pragma importvaluedprocedure
settimer, "sys$setimr",
(condvaluetype,
starlet.e f_numbertype,
starlet .date time type,
AST_ HANDLER,
USERARGTYPE),
(value,
value,
reference,
value,
value)) ;

Figure 1: SETIMR Interface Before Modifications

procedure settimer (I
status : out condvalue-type; -- return value
efn : in starlet.ef numbertype :
starlet. ef number zero;
daytim in starlet. datetimetype;
ASTADR : IN SYSTEM.ADDRESS;
REQIDT : IN HWADDRESS);

pragma interface (external, settimer);

pragma importvaluedprocedure
set timer, "sys$setimr",
(condvaluetype,
starlet.ef_number_type,
starlet.datetimetype,
SYSTEM. ADDRESS,
Rw ADDRESS),

(value,
value,
reference,

value,
value)); n

Figure 2: SETIMR Interface After Modifications

I

24 CMU/SEI-89-TR-40I

I
I
i 13. Portability Summary

Aside from providing an additional artifact, the VMS port was intended to verify that the
Kernel design and implementation is indeed portable. This was confirmed in a number of
ways:

" The machine- and compiler-dependent packages, identified in [KAM 89], were
the only dependencies and were thoroughly isolated from the rest of the Kernel.

" All the user-visible packages and package bodies were ported without
modification.

a The internal Kernel abstractions were the correct ones, only two new
VAX-specific packages were required for the VMS version.

" The abstractions in packages datagram globals, datagram.management, and
bus io present to the Kernel allowed the entire network subsystem to be
replaced by VMS without impacting any Kernel code.

" The primary difficulties in the VMS port resided in exactly the same areas as in
the initial 68020 development:

" Implementation of the context switch.
I Interfacing to interrupts (or ASTs in the VMS case).
* Context switching as a result of an interrupt.

Clearly, in any port of the Kernel, these are the critical areas that must beaddressed. What is significant, however, is that even these difficult parts were
successfully ported.

I The bottom line is the clearest evaluation of the Kernel's portability. Comparing the initial
development effort to the porting effort:

* Initial: 12 labor-years of effort to design, document, and implement.
o Port: 8 labor-months of effort to implement and update the documentation (the

requirements and design remained the same).

Although the VMS environment was much easier to work in than the 68020 environment,
porting the Kernel required only a small fraction of the time the initial development required.

II
i
I
I

ICMU/SEI-89-TR-40 25

I
I

II. Kernel Extensions

The intent of Part II of this document is to present an industry perspective on extensibility
issues related to the Distributed Ada Real-time Kernel (DARK) developed at the Software I
Engineering Institute (SEI). The document is structured in the form of a dialogue, with the
industry request and rationale first, followed by the SEI response.

Most of the industry material was provided by Westinghouse Corporation, whose invaluable
assistance is gratefully acknowledged. I

Background
The DARK artifact developed at the SEI represents a proof of concept that, for various
reasons, makes many simplifications to the problem of building distributed real-time systems
in Ada. In order for DARK to be of more general use in the MCCR community, some of the I
restrictions it assumes (described in (KFD 89]) must be relaxed. Accordingly, this document
presents, from an industry perspective, several recommendations on Kernel extensibility.
Extensions to the Kernel include any enhancement, modification, or addition required to
make the Kernel better suited to support distributed real-time processing and to fulfill
mission-critical computer resource requirements.10 The recommendations contained in Part
II of this document are a consolidation of thoughts presented by many individuals in industry
and the DARK project team and do not necessarily form an exhaustive list of required
extensions. No attempt has been made to explain how the extensions can be accomplished
and some extensions may prove to be solved through application code.

Content I
Each chapter in Part II contain. information for a specific extension of the Kernel. The
information includes a description of the extension, a rationale for why the extension is
required or desired, and a brief response (for each of the major recommendations) in terms
of the desirability, feasibility, and importance of the requested extension.11 The 1
recommendations are presented in relative order of importance, with the first
recommendation being of highest priority. The final chapter contains some concluding
remarks.

I

1°See [Flynn 79], [Natarajan 87], and [Grover 85] for additional background information. I

"The responses represent the technical opinion of the DARK project, and are not an official SEI position. u
26 CMU/SEI-89-TR-40

m m |I

I

I
* 1. Dynamic Reconfiguration

1.1. Description
Dynamic reconfiguration is a rather broad area and is a complex issue to deal with in the
Kernel, but certain capabilities are required in order for the MCCR community to adopt the
Kernel and meet project requirements. Simply stated, dynamic reconfiguration is the ability
to modify and extend a system while it is running. 12 This ability includes modifications and
extensions to both hardware and software.

Dynamic reconfiguration of hardware will require a dynamic Network Configuration Table
(NCT) that allows an application to change or add entries during execution. Since hardware
redundancy can currently be built into a system and communicated to the Kernel, this ability
has a low priority. However, the ability to replace hardware components, such as processor
boards, without system shutdown will be useful and may require modifications to the NCT.

Dynamic reconfiguration of software, on the other hand, is an important area for the Kernel
to implement, one that will greatly support fault tolerance. One capability desired is the
ability to start-up and allow system communication within a redundant processor or a
replaced processor while the rest of the system continues processing. Another capability is
to allow the dynamic declaration and creation of processes. These capabilities may require
a periodic executive routine instead of a terminating main unit to manage reconfiguration
and may require the logging of valid system states in the form of critical data snapshots so
that recovery can be accomplished after reconfiguration.

1.2. Rationale

Many industrial projects cannot use the Kernel and fulfill their requirements because of the
static nature of the Kernel imposed by many of its restrictions. Many of these requirements
deal with a system's ability to recover from failures while still maintaining whatever
processing is possible in the degraded condition. For example, air traffic control systems
require the ability to replace failed boards and start their execution while the system is
running and processing data. Capabilities like this are part of the essence of mission-critical
systems; if the system is not mission-critical, then it can be powered down and repaired
without a catastrophic result. Since the Kernel is targeted to mission-critical systems, then a
certain degree of dynamic reconfiguration should by implemented in order for these systems

i *o meet their requirements.

I
12See (Kramer 85], pg. 424.

CMU/SEI-89-TR-40 27

1.3. Response
This extension seems to be requested mainly as a way of implementing part of the next
request, fault tolerance. Reconfiguration is a necessary part of any scheme for fault
tolerance. U
Much of the technical work is straightforward. Allowing the dynamic declaration and
creation of processes is mostly a matter of removing error and consistency checks. Also, it
would not be difficult to allow the NOT to be changed dynamically; the main task would be
the design and implementation of the necessary protocol messages.

The major technical issue, however, is not that of updating the NOT. It is rather the issue of
how process-local state can migrate along with the code of a process. Such state includes
local data, claimed resources, and (especially) pending messages. If process migration is
not required as part of the extension, then it appears much easier.

I
I
I
I
I
I
I
I
I'
I
I

28 CMU/SEI-89-TR-40I

I
I
* 2. Fault Tolerance

5 2.1. Description

Fault tolerance is another broad and complex issue that overlaps with dynamic
reconfiguration and a dynamic implementation rather than the static nature of the Kernel. 13

Fault tolerant computer systems are defined as "systems capable of recovering from failures
of their hardware or software components to provide uninterrupted real-time service." 14

(KFD 89] specifies that the "Kernel does not implement fault tolerance, but it does detect
the presence of certain [...] classes of faults" and that the "Kernel provides the capability for
an application to build some rudimentary degree of fault tolerance."

I Specific extensions to this approach are difficult to identify, but, the overall goal is to offer
the mechanisms that will allow a system to function in the presence of failures and to
recover from those failures. This goal implies that the Kernel is capable of detecting,
identifying, and containing faults and correctly reporting them to the application. Also
implied is that the Kernel offers the facilities to allow an application to assess the faults and
recover from them. Some examples of capabilities desired include the Kernel's ability to
detect and identify failed processors, devices, or communication links and to report them to
the application; the Kernel's allowing reconfiguration and dynamic process creation and
start-up; the Kernel's allowing code and data download and migration; and the Kernel's
providing the applications programmer finer control over the level of fault tolerance and
exception handling. These capabilities imply that the Kernel offers the necessary interfaces
to the application so that the application can communicate the system status to the Kernel
and control the recovery in the presence of failures.

I 2.2. Rationale
* Fault tolerance is another issue that affects the Kernel's ability to meet the near-term needs

of the MCCR community. Fault tolerance requirements are some of the most stringent
requirements the MCCR community must meet and they can only be met by the combined
capabilities of hardware and both system and application software. Therefore, in order for
the MCCR community to adopt the Kernel and deal with such requirements, the Kernel
should supply a greater degree of fault tolerance.

I
I

13See [Knight 87] and [Northcutt 87] for additional background information.

3 14See [Vick 84], pg. 437

CMU/SEI-89-TR-40 29

I
I

2.3. Response

This is a most desirable requirement and, if feasible, should be given the highest priority. I
Unfortunately, it is also by far the most difficult. The DARK project has always viewed this
issue as too large to be addressed within the project's time and resource constraints.

I
I
U
U
I
U
I
I
I
I
I
I
I
I

30 CMU/SEI-89-TR-40I

I
I
* 3. Tightly-Coupled Systems

5 3.1. Description
The Kernel should be extended to support tightly-coupled systems which are systems that
share a common backplane and utilize shared memory. There are certainly various degrees
to which the Kernel can support such systems. The current extreme is that the Kernel,
which is based on loosely-coupled systems, does not assume the inclusion of shared
memory in a system and therefore does not offer any facilities to use it.15 At the other
extreme, the Kernel could absolutely rely on shared memory by making the Kernel's data
structures shared entities so that processes can be allocated across processors, thereby,
distributing the processing load in a processor-independent manner. The latter extreme
prevents the Kernel from being used within a loosely-coupled system and greatly restricts
the Kernel's portability. Since efficiency is lost in implementations that are too generic, the
best solution may be to create two separate versions of the Kernel, one to support
loosely-coupled systems and one to support tightly-coupled systems. For the short term,
however, the current recommendation is a compromise of the two extremes.

The compromise suggested is in the areas of communication, interrupts, and semaphores.
The Kernel design indicates that each process receives messages through a single
message port that is contained in local memory and managed by the Kernel and that the
Kernel has control of the underlying communication medium. Communication across
processors is through this medium from Kernel to Kernel. In a tightly-coupled system,
communication between processors is primarily through shared memory. This method of
communication requires a greater degree of management than sending a datagram out over
a communication medium. The recommendation in the area of communication is that the
Kernel supports process communication through shared memory.

The Kernel assumes, according to the [KFD 89], that interrupts "are events local to a
processor and cannot be directly handled or bound by processes running on a different
processor." In a tightly-coupled system, this assumption is not necessarily true; interrupts
can be global events and in many cases it is advantageous to make them so. By making
interrupts global events, processors that are least busy or least critical can service the
interrupts, thereby, creating efficiency through flexibility. The recommendation in the area of
interrupts is that the Kernel allows and supports interrupts as global events.

The Kernel assumes, according to the [KFD 89], that a "semaphore is visible only on the
processor on which it is declared, and therefore can be used only by processes local '" the
processor." The recommendation in the area of semaphores is that the Kernel extend the
use of semaphores to include global resources.

3 15Nor does the Kernel interface with the use of shared memory by the application via typical Ada means.

CMU/SEI-89-TR-40 31

I
3.2. Rationale
The Kernel is intended to meet the near-term needs of the mission-critical computer
resource (MCCR) community who are involved with real-time, distributed Ada. This
community implements their applications within both tightly-coupled and loosely-coupled
environments depending upon specific needs and requirements. The Electronic Systems
Group of Westinghouse utilizes both types of systems. Tightly-coupled systems are
frequently used within ground-based radar systems where large amounts of data must
remain accessible to all processes throughout the processing flow, thereby requiring shared
memory and fast access to the shared memory. For the Kernel to meet its objective for the
whole community, it should address the issues related to tightly-coupled systems and offer
the implementors of such systems an alternative that may be more cost-effective and offer
more user control than some of the existing products on the market.

3.3. Response
Technically, there are three aspects to implementation: communication via shared memory,
shared semaphores, and global interrupts. The first is possible using the existing
communication primitives, since one process can send to another a message that conveys
access rights to a piece of shared memory. The Kernel does not prevent any process from
acquiring shared memory, using it, and communicating its access rights to another process. U
Shared semaphores can be implemented without major impact to the other parts of the
Kernel. The data structure and access primitives would need to guard against true
concurrent access from more than one processor, and the Release primitive would need to
signal to the processor on which the next claimant for the semaphore was sited.

Without further detail, the feasibility of having interrupts made global across several 3
processors cannot be assessed. At first sight, this seems a major change, since to perform
the requested action - select a processor to respond to the interrupt dynamically on the
basis of load - the several incarnations of the DARK scheduler on the several processors I
would have to communicate in ways never envisaged in their design.

A related issue in tightly-coupled, shared memory systems is that of dynamic load balancing 3
among the processors. It may be possible to perform this automatically by moving the
process run queue to shared memory and protecting it against concurrent access. In this
situation, whenever the current running process blocks, the Scheduler on the processor I
would go to the common run queue and select the next process to execute.

I
I
I

32 CMU/SEI-89-TR-40I

I
I
* 4. Code Overlays

1 4.1. Description

Code overlays involve the swapping of executable code and/or data in and out of memory.
In embedded systems, the overlay code is usually contained in read-only memory (ROM) or
shared memory and loaded and executed when required. [KFD 89] indicates that the
"Kernel operates under the restriction that all processes and all data are memory resident at
all times" and that this "does not prohibit the application from building processes that can be
rolled in and out of memory." This specification appears to allow the application code to
perform code overlays on its own; however, since processes are created statically, the
Kernel must maintain the data structures and other overhead for all processes at all times.
This situation may not be acceptable in systems that require overlaying and the solution
may be accomplished by altering the Kernel to allow the dynamic creation of processes. In
addition, the system model for the Kernel limits a single load image per processor and in a
system that requires code overlays and that has available the ability for dynamic
reconfiguration, multiple load images may be needed on a single processor.

4.2. Rationale

I Code overlaying is of great use in embedded systems that have tight specifications for
system volume such as in tactical fighter radar systems. Systems like this have limited
memory capacity while requiring a great degree of functionality. Code overlaying allows
memory to be utilized efficiently by allowing processes that execute once, such as start-up
routines, and processes that are executed under special circumstances, such as error3 recovery routines to be swapped in and out of memory.

4.3. Response
One of the assumptions in the DARK design is that the target processors will not have tight
limits on memory. Given that assumption, there seems no need to provide support for code

overlays within the Kernel itself.

II
I
I
3 CMU/SEI-89-TR-40 33

I
I

5. Communication Enhancements

5.1. Description I
The following recommendations are for extensions to the communication scheme adopted
by the Kernel:

" Allow the user to select a communication mode that is as fast as possible.

" Allow message priorities that automatically adjust the order of messages in the i
process queues.

" Enhance the Kernel's ability to ensure message integrity by implementing error
detection and recovery within the data link layer.

" Add a parameter to the synchronous send that indicates the number of
automatic retries required if the message is NAK-ed.

* Incorporate a network layer that allows Kernel communications between
homogeneous and heterogeneous machines.

5.2. Rationale I
Requirements for communications vary widely among MCCR projects. Some areas that
may be common among these requirements are communication speed, message priorities, m

and message integrity. Fast communications are required in many applications and imply
that the Kernel offers the mechanism for such communications and trusts the user to ensure 3
that the communications are performed correctly. One method suggested to achieve
greater efficiency in Kernel communications is to eliminate the datagram conversion and
implement a straight direct memory access (DMA) transfer as an option. This option can be 3
selected for systems that require fast, no-frills communications and will transfer much of the
responsibility for communication verification to the user.

Within many systems developed by the MCCR community there exist emergency, test, and
timing messages that must be processed at a higher priority than other messages to ensure
that they reach their destination promptly. The Kernel currently does not offer provision forI
these high priority messages due to the single message port for each process and the lack
of message priorities. It is necessary that certain provisions be included.

Another area in which the MCCR community must meet requirements for communication is
message integrity. Message integrity is primarily left up to the application code by the
Kernel at present and depends a great deal on the communication medium selected for the I
system. Incorporating certain techniques within the Kernel that can be toggled such as
checksums, Hamming correction codes, and automatic retries would help to meet integrity
requirements in systems that do not have sufficient built-in integrity checks while keeping I
communication overhead to a minimum.

I
34 CMU/SEI-89-TR-40i

In II I

I
I

Many projects must deal with network communications and if the possibility exists to
incorporate a generalized network layer within the Kernel, then it will be of benefit to the
MCCR community. This layer would allow Kernel communications between machines over
various communication media and accommodate a heterogeneous network, e.g., a Motorola
68020 processor, a Motorola 88000 processor, and a MIPS processor on the same network
running the Kernel and communicating with each other.I
5.3. Response

I All the proposed extensions seem desirable. The technical difficulty varies considerably.

Message priorities would be relatively easy to implement, provided a reasonable action to
take on message-queue overflow could be specified. Note, however, that such priorities
would be global; that is, the set of message priorities across all processors would have to be3 assigned in a globally consistent manner.

Automatic error detection, recovery, and retry pose more difficulty, since they require the
sending Kernel to keep copies of originated messages until they are acknowledged or
abandoned. This complicates the storage management, and hence the user customization,
but is not intractable. It would be easiest to implement this extension as part of a revised
Send and Wait primitive, since the message text would automatically remain available for a
retry.

Providing communications between heterogeneous machines is a complicated task, but can
be isolated from the rest of the Kernel at least as far as the Kernel protocol and datagram
formats are concerned. This assumes that the application is responsible for reformatting the
message bodies themselves, taking due account of byte order, character sets, number
representations, and so on.

II
I
I
I
I

ICMU/SEI-89-TR-40 35

I

6. Duplicate Load Images

6.1. Description
This recommendation addresses the restrictions imposed on the applications programmer
by the [KFD 89] requirement for globally unique process names. Implementing a different
technique to uniquely identify processes across the system, possibly by utilizing processor
id's, will allow load images to be duplicated or cloned on many processors.

6.2. Rationale I
The [KFD 89] requirement for globally unique process names forces limitations on the
methods available to an applications programmer for program partitioning. There are many
applications, especially within a tightly-coupled implementation, where partitioning based on
data and then cloning the load image to process the partitioned data is advantageous.
Cloning load images has advantages for data integrity, processing throughput, and fault
tolerance and is therefore recommended for the Kernel implementation.

6.3. Response 1
The globally unique process names are used only during initialization to identify each
process to all nodes in the network. These names, however, can be constructed
dynamically by the application code - they are merely string values - and so do not
preclude the same load image being used on several processors. Indeed, most of the DARK
unit tests use this technique, to avoid having to be linked in multiple versions. The problem
with incorporating a processor-id in the process name is that all other processes have to I
know where the process is sited, which conflicts with a DARK requirement. In addition, it
would make manual reconfiguration of the application code more difficult, since a process's
name would have to change whenever its site changed. However, if these limitations are I
acceptable, the Kernel does at present provide the ability to construct process names
dynamically in a robust manner.

3
I
I
I

36 CMU/SEI-89-TR-40I

I
N

7. Single Processor Mode

7.1. Description
A provision for a single processor mode will allow the Kernel to manage and control
communication for a multi-processing application on a single processor. This capability may
already by possible within the Kernel, but there may exist additional optimizations that can
be included under this mode.I
7.2. Rationale

3 At present, there exist many MCCR applications that can effectively execute on a single
processor and that are required to do so, such as in missile applications that only offer
space for one processor. As throughput capacities increase with improved processor
technology, the number of single processor applications will continue to increase as well.
Therefore, the Kernel should address the single processor needs of a growing area of
MCCR applications.

3 7.3. Response
The Kernel can already function on a single-processor target, but with the restriction that the
application is a single Ada program. This allows DARK to be used directly for
single-processor applications. It would also be possible to customize the code for
single-processor use, though the Kernel does not at present do so.

3 The VMS version of DARK provides exactly the requested capability to run multiple Ada
programs, representing multiple DARK nodes, on the same processor. However, this takes
advantage of the Ada multiprogramming capabilities of the language implementation, and of
the communication facilities of the operating system. While it was straightforward to
implement on this target, there is no guarantee that other targets would be as amenable,
since their language implementations might not provide reasonable support for Ada
multiprogramming.

3U
I
I
3 CMU/SEI-89-TR-40 37

I
8. Initialization Control

8.1. Description
This recommendation involves allowing more application code control over system
initialization as an alternative to rewriting the initialization protocol. Some controls
recommended include bypassing the Network Configuration Table (NCT) verification and 3
allowing the Master processor to start-up selected processors as they become ready,
instead of waiting for all processors to become ready. In addition, the fact that the Master
processor is a single point-of-failure in the system is cause for concern and forcing I
pre-elaboration in some cases to save start-up time is a desirable feature.

8.2. Rationale
[KFD 89] specifies that initialization is not a time-critical function. This assumption is not i

necessarily true within MCCR projects where some requirements for initialization are on the
order of 100 ms and even lower. Allowing more application code control over initialization
will help the applications programmer satisfy these strict requirements. Bypassing the NCT
verification simply leaves the assurance of NCT integrity up to the applications programmer.
Allowing control over processor start-up has some risks but it will enable high priority
processing to begin as soon as possible. Any single point-of-failure in a mission-critical fault I
tolerant system is cause for concern and should be avoided if possible.

8.3. Response I
One of the aims in designing the initialization protocol was to make it both robust and easy 3
to use. To some extent, the features that would implement the extensions are already
present, but hidden from the application level. n

In particular, it would be easy to omit NCT broadcast and verification; this could even be a
customization option. The ability to start the subordinate processors in a specific order
already exists; it is embedded in the NCT. Finally, there is not an absolute single point of I
failure, since the Kernel does not prevent a processor from aborting its "subordinate"
initialization (via a time out) and starting a new initialization sequence as "master." 3

I
I
I

38 CMU/SEI-89-TR-40i

I I I

I

* 9. Processor Global Priority Adjustment

1 9.1. Description
[KFD 891 states that a "Kernel process may set only its own priority." This recommendation

is to extend the Kernel to allow priorities to be set globally within each processor; that is, a
process may set the priority of any other process within the same processor. It should be
noted that if dynamic reconfiguration is implemented to the extent that processes may float3 Ibetween processors, then adjusting priority across processors may also be needed.

3 9.2. Rationale
This extension will be useful when processes must be activated based on aperiodic
situations. For example, within a threat detection and response system, threat response
processing should remain dormant until a threat is detected; when a threat is detected,
threat response should be activated quickly and at a very high priority. There certainly exist
other methods to handle these situations, but adding global priority adjustment seems to be
a simple and direct change to the Kernel that will offer more flexibility to the applications
programmer.I
9.3. Response

I This would be technically straightforward, but its desirability is questionable. One objection
is that it damages the predictability of the scheduler: at present, a process that blocks with
high priority can be guaranteed to respond rapidly to the expected event; this would not be
true if another process could asynchronously downgrade it. Of course, it is currently
possible to effect such changes by sending a message to a process and the process3 adjusting its own priority based on that message.

I
I
I
I
I
3 CMU/SEI-89-TR-40 39

I
I

10. Fast Mode Change

10.1. Description
This suggestion is for the Kernel, and more specifically the scheduler, to be able to respond
quickly to a processing mode change without a restart or much overhead. A mode change,
for example, is a jet fighter radar system switching from a navigation mode to a 3
track-while-scan mode and then to a threat response mode without a restart or significant
overhead.

10.2. Rationale
This extension will enable the user of the Kernel to address specific requirements for fast
mode changes in certain MCCR systems.

10.3. Response
It is currently feasible to implement a simple, fast mode change by having the critical
process(es) blocked on a receive with a high resumption priority. Then, when a mode
change needs to be effected, a message can be sent to the appropriate process(es). A 3
more sophisticated mode change scheme could be implemented using some of the other
proposed extensions, such as:

* Message priorities: to force through high priority data. i
* Dynamic process creation: to create the new mode dynamically on the fly

(although this may actually be too time consuming to be reasonable). 3
* Processor priority adjustment: to raise the importance of a process as a result

of a mode change.

I
I
I
I
I

40 CMUISEI-89-TR-40i"

I

I
I

11. Memory Management

1 11.1. Description
This recommendation suggests that the Kernel should offer facilities to manage processor
memory resources. Within the present static implementation of the Kernel, it is unclear
exactly what facilities are needed, except possibly for memory protection. However, if
dynamic reconfiguration is implemented, then more extensive facilities will be needed to
manage the memory for processes as they move across processors. Two questions that
arise from this suggestion are how will the Kernel obtain the necessary information from the
linker to manage and protect the memory space, and how much will the Kernel rely on the3 run time to perform memory allocation and deallocation.

11.2. Rationale
Memory management additions to the Kernel will offer more capability and flexibility to an
applications programmer and will be useful in situations where static allocation of memory is
not the most efficient way to handle the memory resource or when memory capacity does
not allow it. Also, memory management will support the implementation of dynamic3 reconfiguration.

11.3. Response
This extension is appropriate if the Kernel is ported to a target that provides
memory-management services. There are two technical issues involved in providing
memory management through the Kernel. One is the setting of appropriate protections,
especially dynamically as processes are suspended and resumed. This is not difficult, and
would be an isolable change to the Kernel. However, it could have a severe impact on
Kernel performance, since it adds to the cost of every context switch.

The other is the issue of dynamic allocation and deallocation of memory. This is more
difficult especially if the Kernel performance is to remain predictable (the classic real-time
versus dynamic storage allocation issue).

I
I
I
I
3 CMU/SEI-89-TR-40 41

I
I

12. Extensibility Summary
Part II of this document presents an industry perspective, and more specifically a
Westinghouse perspective, on the suitability of the Kernel to support distributed real-time
processing and to fulfill mission-critical computer resource (MCCR) requirements. [KFD
89] states that the "main purpose of the Kernel is to demonstrate that it is possible to
develop application code entirely in Ada that will have acceptable quality and real-time
performance" and that the resulting prototype "is not intended to solve all the problems of
embedded, real-time systems." The Kernel as presented is sufficient to fulfill this purpose.
However, in order for the Kernel to be widely adopted for use within the MCCR community,
extensions must be implemented. Implementing extensions that will alleviate many of the
restrictions related to these areas will produce a Kernel better suited to meet the needs of
the MCCR community.

4
I
N
I
I
I
I
U
I
I
I

42 CMU/SEI-89-TR-40I

I
I
* Appendix A: Machine and Compiler Dependencies

Because DARK is targeted to specific hardware and software configurations, there are a
number of general dependencies built into the Kernel. The general hardware and compiler
dependencies are discussed in the Kernel Architecture Manual. This appendix identifies
specific dependencies that are peculiar to the compilation systems and target hardware, as3 well as subtleties in the code.

These fall into seven categories:3 1. 68020: dependencies peculiar to the 68020 CPU architecture.
2. VAX: dependencies peculiar to the VAX CPU architecture.
3. TS-Ada: dependencies peculiar to the TeleSoft V3.22 VMS to 680X0

compilation system.
4. VAX-Ada: dependencies peculiar to the VAX Ada Vi.5 compilation system.
5. 68K-Net: dependencies peculiar to the communications network used by

68020 version of the Kernel.
6. VMS-Net: dependencies peculiar to the communications network used by

VMS version of the Kernel.

7. Note: these are not dependencies, they identify obscure subtleties in the code.

II
I
I
I
I
I
I
I

ICMU/SEI-89-TR-40 43

A.1. General 68020 Dependencies

Package Dependency Comment

busio Note Multi_send is a pure software broadcast.

clock 68020 Get_time and lic_initialize
are implemented in assembly language.
Use Ada to access an assembler object.
Maximum time between clock interrupts.

contextsavearea 68020 The process context is 68020-specific,
FP CoProc including Floating Point CoProcessor data.

datagram globals TS-Ada Uses rep spec to control layout of
datagrams.
Uses the Ada allocator during initialization.

_ I
generickerneltime 68020 Defines a signed 64-bit value to hold time.

Note Interfaces to assembly language to
manipulate time.

genericnetwork configuration TS-Ada Must be hand-instantiated, because of a
TS-Ada bug.

genericnetwork globals 68K-Net 8-bit node address is specific to the
DARK ring architecture.

genericjprocess_table 68020 Stack addresses, word alignment, and
contextsavearea.

genericpcess managers TS-Ada Minimum required stack size.
generic processormanagement TS-Ada All Kernel initialization calls encapsulated

here to avoid elaboration-order
dependencies.

generic storagemanager Note Uses the Ada allocator.

generic time globals Note Base time defined to be Julian Day 1.
hardware_interface TS-Ada Hw byte defined as a 16-bit number with a

rep spec to move the data to the low-order
byte. e
Defines all the primitive data types.

interprocessor interrupts 68020 Interfaces to assembly language.
interrupt names 68020 Defines the interrupt addresses reserved

by the Kernel.
kernel interrupt management 68020 Interfaces to assembly language. 3
kemeltime Note The numb,,r of clock ticks/second is

specific t.., the DARK architecture.

lowlevelhardware 68020 Interfaces to assembly ;anguage.

low leveljprocessencapsulation 68020 Uses a machine code insert.
Interfaces to assembly language.

lowlevel_storage_manager Note Uses the Ada allocator.
lowlevelcontextswitcher 68020 Interfaces to assembly language.

44 CMU/SEI-89-TR-40

I
U

* Package Dependency Comment

low_levelinterrupLmanagement 68020 Interfaces to assembly language.

memory addresses 68020 Defines addresses used in shared memory.

mvme133a_definitions 68020 Defines board-specific registers and addresses.
TS-Ada Uses the TeleSoft-specific notation for hex

values with sign bit set.

mz8305_definitions 68020 Defines board specific registers and addresses.
TS-Ada Uses the TeleSoft-specific notation for hex

values with sign bit set.

nproc 68020 Uses shared memory for datagram buffers.
TS-Ada Closely coupled with DARK ring architecture.

Requires TeleSoft S Linker option to move
the heap to shared memory.

parallel io controller 68020 DARK communication hardware.

process encapsulation Note There are proceoures here that do not return,
but rather transfer control elsewhere.

scc. porta 68020 Defines board-specific registers and addresses.
TS-Ada Uses the TeleSoft specific notation for hex

values with sign bit set.

scheduler Note There is a procedure here that does not return,
but rather transfers control elsewhere.

timercontroller 68020 Specific to the DARK architecture.
Interfaces to assembly language.

I
I
I
I
I
I
I
I
3 CMU/SEI-89-TR-40 45

I
I

A.2. Detailed 68020 Assembly Language Dependencies

Package Dependency Comment

Ilcsbody machine code 68020 Saves and restores the 68020-specific process

Ape body machinecode TS-Ada Provides the process interface that allows
processes to run.

im~bodymachine-code 68020 Interface to the 68020 interrupt mechanism.

Ilimbody machine-code 68020 Interface to the 68020 interrupt mechanism.

tc~body machine-code 68020 Interface to the timer hardware. 3
ipi body machinecode 68020 Interface to communication hardware.

gkLbody machine code 68020 Implementation of DARK's time representation. 3
lhtbody machine code 68020 Interface to communication hardware.

low_level_clock 68020 Interface to the timer hardware.

I
I
I
I
I
I
U
I

I
I

I
I

A.3. General VAXNMS Dependencies

Package Dependency Comment

astmanager VAX Interfaces to assembly lanrivage.
Interfaces to Vo " ASTs.

bus_io VMS-Net Relies on VAX system services for
communication.

clock VAX Relies on VAX .ystm services.
contextsavearea Note No VMS-specific structure has been imposed

FP CoProc on the context save area.
datagram globals VMS-Ada Uses rep spec to control layout of datagrams.

Uses the Ada allocator during initialization.
generic kerneltime VAX Defines a signed 64-bit value to hold time.

Note Interfaces to assembly language to manipulate
time.
Must be hand-instantiated.

genericprocess table VAX Stack addresses, word alignment, and
g r contextsavearea.
genericprocessmanagers VAX-Ada Minimum required stack size.
generic processor management VMS-Ada All Kernel initialization calls encapsulated3 _here to avoid elaboration-order dependencies.

generic time_gobals Note Base time defined to be Julian Day 1.
hardwareinterface VMS-Ada Defines all the primitive data types.

Defines VAX-specific unsigned type.
interrupt_names Note Defines the interrupt addresses reserved by the

Kernel, but not used by VMS version.

kerneltime Note The number of clock ticks/second is specific to
the DARK architecture.

* low levelhardware VAX Uses VMS system services.
low levelprocess.-encapsulation VAX Interfaces to assembly language.

lowlevel storagemanager Note Uses the Ada allocator.

lowlevelcontextswitcher VAX Interfaces to assembly language.

process encapsulation Note There are procedures here that do not return,
I Ibut rather transfer control elsewhere.

scheduler Note There is a procedure here that does not return,
but rather transfers control elsewhere.

II
I
3 CMU/SEI-89-TR-40 47

I
I

A.4. Detailed VAX Assembly Language Dependencies

Package Dependency Comment

am._body-machinecode VAX Encapsulates DARK interrupt handlers as VMS

AST handlers.
lcs body machinecode VAX Saves and restores the VAX-specific process

context.

Ipe body machine_code VAX-Ada Provides the process interface that allows
processes to run.

gkLbody machine code VAX Implementation of DARK's time representation. 3

I
I
I
I
I
I
I
I
I
I
I
I

48 CMU/SEI-89-TR-40I

i

References
[ALRM 83] American National Standards institute, Inc.

Reference Manual for the Ada Programming Language.
Technical Report ANSI/MIL-STD 1815A-1 983, ANSI, New York, NY,

1983.

[Flynn 79] Flynn, M.J., J.N. Gray, et. al.
Operating Systems, An Advanced Course.
Springer-Verlag, New York, NY, 1979.

(Grover 85] Grover, V.
Guidelines for a Minimal Ada Runtime Environment.
Technical Report ESD-TP-85-139, Softech, Inc., 460 Totten Pond Rd.,

Waltham, MA 02154, Jan, 1985.

[KAM 89] Bamberger, J., T. Coddington, C. Colket, R. Firth, D. Klein,
D. Stinchcomb, R. Van Scoy.
Kernel Architecture Manual.
Technical Report CMU/SEI-89-TR-19, ESD-TR-89-27, Software

Engineering Institute, December, 1989.

[KFD 89] Bamberger, J., C. Colket, R. Firth, D. Klein, R. Van Scoy.
Kernel Facilities Definition.
Technical Report CMU/SEI-88-TR-1 6, ESD-TR-88-17, ADA1 98933,

Software Engineering Institute, December, 1989.

[Knight 87] Knight, J. and J. Urquhart.
On the Implementation and Use of Ada on Fault-Tolerant Distributed

Systems.
IEEE Transactions on Software Engineering SE-1 3, No. 5:553-563, 1987.

[Kramer 85] Kramer, J. and J. Magee.
Dynamic Configuration for Distributed Systems.
IEEE Transactions on Software Engineering SE-11, No. 4:424-436, 1985.

[KUM 89] Bamberger, J., T. Coddington, R. Firth, D. Klein, D. Stinchcomb, R. Van
Scoy.
Kernel User's Manual.
Technical Report CMU/SEI-89-UG-1, ESD-TR-89-15, Software

Engineering Institute, December, 1989.

[Natarajan 87] Natarajan, N. and T. Jian.
Kernel Mechanisms for Distributed Real-time Programs.
The Pennsylvania State University, University Park, PA, 1987.

[Northcutt 87] Northcutt, J.D.
Mechanisms for Reliable Distributed Real-Time Operating Systems.
Academic Press, Inc., Boston, MA, 1987.

[Vick 84] Vick, C.R., et. al.
Handbook of Software Engineering.
Van Nostrand Reinhold Company Inc., New York, NY, 1984.

I
ICMU/SEI-89-TR-40 49

SECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUM ENTATION PAGE

I. REPORT SECURITY CLASSIFICATION 11b. RESTRICTIVE MARKINGS

IN LASSFIEDNONE

2,. SECURITY CLASSIFICATION AUTHORITY 3. ISTRIBUTION/A VAILABILITY OF REPORT

NIA APPROVED FOR PUBLIC RELEASE
7,. OECLASSIFICATION/0OWNGRAOING SCHEDULE DISTRIBUTION UNLIMITED

4PE RFORMING ORGANIZATION REPORT NUMBER(SI S. MONITORING ORGANIZATION REPORT NUMBER(S)

I CMU/ SEI-89-TR-40 ________ ESD-89-TR-94
6.& NAME OF PERFORMING ORGANIZATION jb. OFFICE SYMBOL 74L NAME OF MONITORING ORGANIZATION

I(If apptfrabtelESOFTWARE ENGINEERING INST. I SEI SEI JOINT PROGRAM OFFICE

6C. ADDRESS (City. State ansd ZIP Code)- 7b. ADDRESS (City. State ansd ZIP Cadet

CARNEGIE-MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE

____ ___ ___ ___ ___ ____ _ _ ___ ___ ___ HANSCAM- MA Q1711

8a. NAME OF FUNOING/SPONSORING 8ab. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IOENTIFICATIODL.PUMGEA
ORGANIZATION O (f apliablISEI JOINT PROGRAM OFFICE j ESD/XRSL F1962885CO003

8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

* ITTSBURGH, PA 15213 ELEMENT NO0. NO. NO. NO.

_____________________ 63752F IN/A N/A N/A
11. TI TLE (include Security Classification)

DARK PORTING AND EXTENSION GUIDE Kernel Ve sion 3.0 _______________I12. PERSONAL. AUTHOR(S)

Judy Bamberger, Timothy Coddington, Daniel Klein, David Stinchcomb, Roger Van Scov
13a. TYPE OF REPORT 13b. TIME COVERED 4l. DATE OF REPORT [Yr.. Mo.. Day) 15. PAGE COUNT

* FTNAT. FROM. _ TO ___ December 1989 50S
16. SUPPLEMENTARY NOTATION

1.COSATI CODES 1I. SUBJECT TERMS (Continue onu reverse if necessary and iden ty by block num ber)

FIL RU u.GR. lAda Kernel
FIEL ROUP UB. IDisRibte operating system.

I 19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This document describes the modifications made to the Distributed Ada Real-Time Kernel
(DARK) software when porting it from its original execution environment, the 68020-
based testbed built at the Software Engineering Institute, to a VAX/VMS system.I This document also contains information about logical extensions to the Kernel,

and the impacts thereof, should the Kernel be used in operational. systems.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATIONI NLSIOOULMTDR SAME AS RPT. 0 OTIC USERS 13 UNCLASSIFIED, UNLIMITED DISTRIBUTION
2&. NAME OF RESPONSIStkE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

KARL H. SHINGLER (i,.clude A rea Code)

412 268-7630 SET JPO

DFOM17,3APR EDITION OF I1JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PACE

